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Abstract— In the past several decades Building Energy 
Management Systems (BEMSs) have become vital components of 
most modern buildings. BEMSs utilize advanced microprocessor 
technology combined with extensive sensor data collection and 
communication to minimize energy consumption while 
maintaining high human comfort levels. When properly tuned 
and operated, BEMSs can provide significant energy savings. 
However, the complexity of the acquired sensory data and the 
overwhelming amount of presented information renders them 
difficult to adjust or even understand by responsible building 
managers. This inevitably results in suboptimal BEMS operation 
and performance. To address this issue, this paper reports on a 
research effort that utilizes Computational Intelligence 
techniques to fuse multiple heterogeneous sources of BEMS data 
and to extract relevant actionable information.  This actionable 
information can then be easily understood and acted upon by 
responsible building managers. In particular, this paper 
describes the use of anomaly detection algorithms for improving 
the understandability of BEMS data and for increasing the state-
awareness of building managers. The developed system utilizes 
modified nearest neighbor clustering algorithm and fuzzy logic 
rule extraction technique to automatically build a model of 
normal BEMS operations and detect possible anomalous 
behavior. In addition, linguistic summaries based on fuzzy set 
representation of the input values are generated for the detected 
anomalies which increase the understandability of the presented 
results. 
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I. INTRODUCTION 
Building Energy Management Systems (BEMSs) have 

evolved into highly complex information gathering and 
control systems. When properly tuned, BEMS enable 
significant energy savings in buildings [1]-[3]. According to 
the Department of Energy (DOE) over 50% of energy used in 
buildings is consumed by Heating Ventilation and Air 
Conditioning (HVAC) units and lighting systems [4]. 
However, research has shown that up to 40% of this energy 
can be saved by closely monitoring the state of the building 
and applying advanced control strategies [5], [6]. 

Advanced BEMS uses a large array of sensors placed within 
the building, outside the building and throughout the Air 
Handling Units (AHUs) to gather information about 
temperature, air quality, lighting or occupancy [3], [7], [8]. 
BEMS use this information to control the heating, cooling and 
lighting of the building [2], [3]. This type of control has the 

potential of large energy savings when compared to 
conventional systems, without sacrificing occupant comfort 
[1], [9]-[11]. Furthermore, gathering and analyzing sensor data 
allows the identification of previously unknown building 
performance characteristics [1].  

BEMS also provide data about the current state of the 
system to building managers. Building managers are 
responsible for maintaining uninterrupted safe operation of the 
HVAC and lighting systems without compromising the 
comfort level of the building. The information provided by the 
BEMS should allow the building managers to gain 
understanding of the current state of the building and to 
quickly focus on inefficiencies and anomalous behavior [10], 
[12], [13].  

However, due to the complexity and overwhelming amount 
of the acquired data it is difficult to identify the anomalous 
behaviors and resolve them accordingly [12]-[14]. Current 
BEMS tools also lack the capability of providing actionable 
information by processing and integrating gathered data [1]. 
Some advanced tools specifically created for monitoring and 
analyzing BEMS data exist in the industry [15]-[19]. 
However, these tools commonly require extensive training and 
understanding of the system in order for it to be utilized 
effectively [6], [20].  

In order to improve the understandability of the BEMS and 
the state-awareness of the building managers this paper reports 
on a research effort that utilizes Computational Intelligence 
(CI) techniques for extracting relevant actionable information 
via fusing multiple heterogeneous sources of BEMS data. This 
actionable information is then presented to the responsible 
building managers in order for them to better understand the 
building system and to be able to make correct decisions 
regarding tuning the performance of the system. Advanced CI 
based techniques have been previously used for improving 
BEMS [21]-[24]. 

More specifically, this paper describes the use of anomaly 
detection algorithms for improving the understandability of 
BEMS and enhancing the state awareness of the building 
managers [25]. The developed system utilizes modified 
nearest neighbor clustering algorithm and a fuzzy logic rule 
extraction technique to build a model of normal BEMS 
operations based on provided normal behavior training data set 
[26]. The developed method can then be used to detect 
anomalous BEMS operation. Furthermore, linguistic 



summaries based on fuzzy set representation of the input 
values are generated for the detected anomalies which increase 
the understandability of the presented results. 

The rest of the paper is structured as follows. Section II 
elaborates on the developed anomaly detection algorithm for 
BEMS. The implementation and experimental results are 
presented in section III and the paper is concluded in section 
IV. 

II. ANOMALY DETECTION FOR BEMS 
This section first describes the algorithm for normal 

behavior modeling and anomaly detection using online 
clustering and fuzzy logic system. Next, the linguistic 
description of identified anomalies is described. 

A. Feature Extraction 
Typical BEMS provides measurements from multiple 

sensors throughout the building, e.g. temperature, CO2 or 
occupancy sensing. These measurements can be associated 
with different spatial zones in the building, for example with 
individual rooms. The sensor measurements collected over 
time constitute a time-series data describing the behavior of 
each zone. Different patterns of zone behaviors can be 
experienced in a typical building, for instance, pre-heating of 
the rooms in the morning, maintaining human comfortable 
temperatures during a day, cooling of the zones in the evening 
or maintaining lower temperatures at night. An example of 
real world temperature and CO2 data for a building zone 
recorded over a one week period is depicted in Fig. 1. The 
alternations between working hours (increased temperature 
and CO2) and night time hours is clearly visible. 

Specific features can be extracted from the sensor 
measurements that can describe the different behavioral 
patterns. For simplicity sake, only the temperature sensor data 
are used in the presented initial design of the anomaly 
detection method for BEMS. Two descriptive features are 
extracted from the input data at each sampled time instant: the 
temperature amplitude and the gradient of the temperature. 
Hence, a 2-dimensional feature vector )(tX at time t can be 
computed as: 

 )}1()(),({)( ��� tTtTtTtX  (1) 

Here, T(t) denotes the temperature measurement at time t. 
Including additional sensor measurements, such as CO2, 
occupancy or user comfort level into the feature vector is 
scope of future work. 

B. Rule Extraction via Online Clustering 
The behavioral patterns in a specific building zone can be 

extracted using a previously proposed online fuzzy rule 
extraction technique [26]. This algorithm is capable of online 
learning, which means that the model can be updated without 
the need to re-learn the entire training data set. The obtained 
model of normal zone behavior is composed of a set of fuzzy 
rules. Each rule is extracted using a modified Nearest 
Neighbor Clustering (NNC) algorithm [26]. The original NNC 
algorithm was modified to maintain additional information 
about the spread of data points associated with each cluster 
throughout the clustering process. 

Each cluster Pi of normal zone behavior is described by its 
center of gravity ic

�
, weight wi and a matrix of boundary 

parameters Mi: 
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Here, i is the index of particular cluster, j

ic is the attribute 

value in the jth dimension, j
ic and j

ic are the upper and lower 
bounds on the encountered values of the jth attribute for data 
points assigned to cluster Pi and n denotes the dimensionality 
of the input.  

Initially, the algorithm starts with a single cluster P1 
positioned at the first supplied training data point )0(X . Upon 
acquiring a new data point )(tX  the set of clusters is updated 
according to the NNC algorithm. First, the Euclidean distance 
to all available clusters with respect to the new input feature 
vector )(tX  is calculated. The nearest cluster Pa is identified. 
If the computed nearest distance is greater than the established 
maximum cluster radius parameter, a new cluster is created. 
Otherwise the nearest cluster Pa is updated as: 
 

 
(a) 

 
(b) 

Fig. 1 Building zone measurements of temperature (a) and CO2 (b). 
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As can be seen in (4), the modified NNC algorithm also 

keeps track of the lower and upper bounds of the encountered 
input values in each dimension for every cluster. If the nearest 
cluster is further away than the established maximum cluster 
radius, a new cluster is created according to the standard NNC 
algorithm. 

C. Fuzzy Rule Based Behavior Modeling 
Each of the extracted clusters can be converted into a fuzzy 

rule [26]. Each fuzzy rule describes the belonging of a 
particular sub-region of the multi-dimensional input space to 
the class of normal building zone behavior. 

A fuzzy rule Ri corresponding to cluster Pi is composed of n 
antecedent fuzzy sets njA j

i ...1, � . Each fuzzy set j
iA , 

located in the jth dimension of the input space, is modeled 
using a non-symmetrical Gaussian fuzzy membership 
function, which is defined by three parameters, mean j

im  and 

the left and the right standard deviations j
i� , j

i� , as shown in 
Fig. 2. The parameter values are extracted based on the 
computed cluster Pi as follows: 
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Here, symbol � denotes the fuzziness parameter, which is 

used to adjust the spread of the membership functions. The 
firing strength of fuzzy rule Ri can then computed using the 

minimum operation as: 
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The output of the fuzzy rule is a singleton fuzzy set 

assigning the input pattern to the normal behavior class. 
Hence, the fired output of a particular fuzzy rule is its own 
firing strength ))(( tX

iR� . The final output decision y of the 
anomaly detection system is obtained by applying the 
maximum operator to the output of all available fuzzy rules: 
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Here, C denotes the number of extracted fuzzy rules, which 

is equal to the number of clusters. The value of the output y 
denotes the degree of belonging of input pattern X(t) to the 
class of normal behavior. In other words, the output value y 
expresses the confidence of the algorithm in how likely does 
the current input pattern belong to the class of normal 
behavior. A specific sensitivity threshold can be used for the 
final classification into the normal/anomaly class. 

It should be noted here that the main assumption of the 
anomaly detection algorithm is that a representative normal 
behavior data set has been collected and used for training. In 
case, that the used training data set was not a good 
representation of the class of normal behavior, the detection of 
an anomaly might only signalize that the input data is normal 
but it has not been included in the training data set. This 
assumption constitutes a fundamental concept underlying the 
use of anomaly detection techniques. 

D. Linguistic Description of Anomalies 
In order to further improve the state-awareness of the 

building managers, it is important that the anomaly detection 
system can provide easy to understand linguistic description of 
the identified anomalies. This description linguistically 
characterizes both the input features as well as the confidence 
of the anomaly detection algorithm in classifying the anomaly.  

Assume that the 2-dimensional feature vector composed of 
temperature amplitude and temperature change is used. The 
range of these attributes can be described using a group of 
fuzzy sets with assigned linguistic meaning. In this work, five 
fuzzy triangular and trapezoidal fuzzy sets as depicted in Fig. 
3(a) and Fig. 3(b) were used. Note, that the range of all input 
attributes has been normalized into a unit interval between 0 
and 1. In addition the range of the output value y of the 
anomaly detection algorithm which expresses the confidence 
of the algorithm can also be modeled using 5 fuzzy sets as 

 

 
 (a) (b) (c) 

Fig. 3 Linguistic labels for input features Temperature (a), Temperature Gradient (b) and Confidence (c). 

 
Fig. 2 Illustration of the non-symmetric input Gaussian Fuzzy Set j

iA . 
 



shown in Fig. 3(c). Note, that other fuzzy partitions of the 
respective domains are possible. The actual fuzzy 
representation of each input variable should be manually 
designed based on the language terms commonly used by the 
building managers. 

The linguistic description *
iB for the ith attribute of the 

feature vector X(t) can be obtained by selecting the kth 
linguistic label k

iB  with the highest fuzzy membership degree 
according to: 
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Here, K denotes the number of fuzzy sets used to describe 

the domain of the ith attribute. 
The anomaly detection algorithm evaluates the presence of 

an anomaly at each time sample. However, an anomalous 
event in particular building zone can last multiple consecutive 
time samples. In order to achieve increased state awareness, it 
is important to avoid overloading the building manager with 
anomaly alarms with associated linguistic label for each time 
instant. Instead, the proposed method computes a simple 
meaningful linguistic description, which characterizes the 
entire anomalous event. For an anomaly occurring at time t1 
and lasting �  time steps the linguistic label ),(* ��ttBi  for a 

given input feature i is selected as the kth linguistic label k
iB  

according to: 
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III. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
The proposed anomaly detection method for BEMS was 

applied to the Banner Bank building in Boise, Idaho. This 
section describes the implementation and user interface of the 
developed tool and summarizes the provided novel capabilities 
of the system. 

A. Enhanced BEMS Implementation and User Interface 
The enhanced BEMS system with the implemented anomaly 

detection algorithm was applied to the real-world data 
recorded from the Banner Bank building in Boise, Idaho. The 
building consists of 11 floors, where each floor has between 
10 and 60 different measured zones. In each zone, multiple 
sensor measurements are be available. However, for simplicity 
sake, the initial design presented in this paper considers only 
the temperature sensors. Including additional sensor 
measurements is the scope of future work. 

The presented algorithm was implemented with the 
following parameter values. The maximum cluster radius for 
the nearest neighbor clustering for was set to 0.1. The �
parameter for the fuzzy rules extraction based on the identified 
clusters was set to 2.0 and the sensitivity threshold for 
detecting anomalous events was set to 0.8. 

The inspection of the reported data and the identification of 
anomalous behaviors and inefficiencies in such a complex 
system is a daunting task for the building manager. The 
developed software prototype of the enhanced BEMS is 
focused on increasing the state-awareness of the building 
managers and on automatically identifying anomalous 
behaviors without the need to tediously scan through the large 
data set. 

Fig. 4 depicts the user interface of the developed tool. The 
user interface contains three views: the building view (Fig. 
4(a)), the floor view (Fig. 4(b)) and the data view (Fig. 4(c)). 
The building view provides a summary view of all floors in 
the building, where the color of each floor can depict the 
average temperature or the maximum confidence that an 
anomaly is present on the floor.  The floor view shows the 
floor plan of the selected floor, where the color of each zone 
depicts either the average temperature or the confidence that 
an anomalous behavior was identified for a given zone, as 
shown in Fig. 5. Finally, the user can select a specific zone for 
the given floor and observe the source data plotted over time. 
Upon selecting a specific building zone, the algorithm also 

 
Fig. 4 User interface with the building (a), floor (b) and data view (c). 
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Fig. 5 Visualization of temperature (a) and anomaly confidence level (b). 
 



linguistically expresses either the confidence level that 
particular zone behaves normal or the confidence level that an 
anomaly has been identified and also provides a linguistic 
description of this anomaly. 

The future work will be focused on implementing the 
developed software tool on a mobile device such as tablet, 
which would constitute a portable touch-screen controlled tool 
for building managers. 

B. Automatic Report Generation 
One of the possible applications of the developed enhanced 

BEMS system is automatic report generation for the building 
managers. Assume a scenario in which the building manager 
needs to inspect several weeks of collected BEMS data in an 
attempt to identify anomalous behaviors and other indications 
of possible building energy management inefficiencies. 
Manual step by step inspection of the large dataset is rather an 
infeasible task. 

The anomaly detection method presented in this paper can 
be applied to achieve this task via generating an automatic 
report. The report generation method sequentially processes 
the selected time interval and applies the anomaly detection 
method at every time step. For anomalies lasting just a single 
time step the generated report contains the time, location and 
the linguistic description of the anomaly, which is calculated 
according to (10). For anomalous events spanning multiple 
consecutive time steps, the generated report contains a 

summary of that anomaly with the start and end time of the 
event, location and the representative linguistic description 
computed according to (11). An example of the generated 
summaries is given in Table I. 

C. Performance Tuning 
Apart from automatically generating the summary reports, 

the developed method also allows the building manager to step 
by step inspect the historical data. When interested in only 
inspecting the identified anomalous behavior, the building 
manager can rapidly step through the detected anomalies, 
rather than stepping through every single time sample. The 
developed user interface highlights the location of the anomaly 
and also provides the relevant linguistic description. 

It is important to note that the notion of an anomaly refers 
here to an event that is sufficiently different from the set of 
previously collected and approved normal data used for the 
training of the algorithm. Hence, events which might be 
considered normal from a building operation point of view 
might also be labeled as anomalous if they were not included 
in the normal training dataset. To address this issue, the 
developed anomaly detection system allows for incrementally 
learning new patterns of normal behavior. 

In this scenario, upon inspection of the identified anomalous 
event, the building manager can decide that this anomaly 
should be included in the normal behavior model. The 
algorithm then extracts the relevant input feature vector and 
updates the set of clusters of particular zone. According to the 
used NNC algorithm, either a new cluster will be created or an 
already existing cluster will be updated to account for the new 
data pattern. Next, the set of fuzzy rules for particular zone is 
updated to reflect the recent update. 

In this manner the performance of the anomaly detection 
algorithm can be interactively tuned by the building manager 
to focus only on relevant anomalies. An example of this 
behavior is shown in Fig. 6. The anomaly confidence level for 
the 5th floor is depicted in Fig. 6(a). The anomaly detection 
algorithm clearly marks zones 22 and 29 as anomalous. Fig. 
6(b) then shows the anomaly confidence level after the 
observed behavior in zone 29 was included in the model. 

TABLE I 
AUTOMATICALLY GENERATED BEMS PERFORMANCE REPORT 

Location Time Linguistic Description 

Floor 7, Zone 7 9/16/2011, 
3:45am – 6:45am Temperature is Too Low and Temperature Change is Large Negative ( Confidence is Very High ). 

Floor 7, Zone 6 9/16/2011, 
0:45am – 7:30am Temperature is Too Low and Temperature Change is Moderate Negative ( Confidence is Very High ) 

Floor 7, Zone 11 9/16/2011, 9:00pm Temperature is Medium and Temperature Change is Large Negative ( Confidence is Very High ) 

Floor 7, Zone 2 9/19/2011, 12:45pm: Temperature is Too High and Temperature Change is Large Positive ( Confidence is Significant ) 

Floor 7, Zone 7 9/22/2011, 
7:30am – 8:15am Temperature is Too Low and Temperature Change is Large Positive ( Confidence is Very High ) 

Floor 5, Zone 37 9/23/2011, 8:15pm Temperature is Lower and Temperature Change is Large Negative (Confidence is Very High) 

Floor 5, Zone 2 9/24/2011, 
7:30pm – 8:15pm Temperature is Medium and Temperature Change is Large Negative (Confidence is Very High) 

Floor 5, Zone 23 9/25/2011, 
11:15am – 12:00pm Temperature is Higher and Temperature Change is Moderate Negative (Confidence is Very High) 

Floor 5, Zone 17 9/26/2011, 9:00am Temperature is Too High and Temperature Change is Moderate Positive (Confidence is Significant) 

 

 

     
(a) (b) 

Fig. 6 Anomaly confidence level before (a) and after (b) including the 
behavior observed in zone 29 into the normal behavior model. 

 



IV. CONCLUSION 
This paper reported on a research effort, which focuses on 

using Computational Intelligence techniques to automatically 
process complex sources of Building Energy Management 
Systems data and to extract relevant actionable information for 
responsible building managers. More specifically, this paper 
described the use of anomaly detection algorithms for 
improving the understandability of BEMS. The developed 
system utilized a modified nearest neighbor clustering 
algorithm and fuzzy logic rule extraction technique to 
automatically build a model of normal behavior for individual 
building zones. In addition, a fuzzy set representation of each 
input attribute was used to generate meaningful linguistic 
description of the identified anomalies. The implemented 
system can automatically notify the building manager when an 
anomalous behavior is encountered or the system can be used 
to generate automatic reports from a set of collected historical 
data. The proposed method was demonstrated on a set of real-
world experimental data collected from the Banner Bank 
building in Boise, Idaho.  

ACKNOWLEDGMENT 
This work was supported by the U.S. Department of Energy 

under DOE Idaho Operations Office Contract DE-AC07-
05ID14517, performed as part of the Center for Advanced 
Energy Studies, and the Instrumentation, Control, and 
Intelligent Systems (ICIS) Distinctive Signature of Idaho 
National Laboratory.  

REFERENCES 
[1] A. Ahmed, J. Ploennigs, K. Menzel, B. Cahill, "Multi-dimensional 

building performance data management for continuous commissioning," 
in Advanced Engineering Informatics, vol. 24, no. 4, pp. 466-475, Nov. 
2010. 

[2] N. Nguyen, Q. Tran, J. M. Leger, T. Vuong, "A real-time control using 
wireless sensor network for intelligent energy management system in 
buildings," in Proc. of IEEE Workshop on Environmental Energy and 
Structural Monitoring Systems, pp. 87-92, Sept. 2010. 

[3] I. Cho, C. Shen, S. Potbhare, S. S. Bhattacharyya, N. Goldsman, "Design 
methods for Wireless Sensor Network Building Energy Monitoring 
Systems," in Proc. of 36th Conference on Local Computer Networks, pp. 
974-981, Oct. 2011. 

[4] Department of Energy. (2003). Commercial Buildings Energy 
Consumption Survey: Consumption & Efficiency. Energy Information 
Administration.  

[5] D. Claridge, J. Haberl, M. Liu, J. Houcek, A. Athar, "Can You Achieve 
150% of Predicted Retrofit Savings? Is It Time for Recommissioning?," 
in Proc. of 1994 ACEEE Summer study on energy efficiency in 
buildings, pp. 73-88, Aug. 1994. 

[6] C. Duarte, B. Acker, R. Grosshans, M. Manic, K. Van Den 
Wymelenberg, C. Rieger, "Prioritizing and Visualizing Energy 
Management and Control System Data to Provide Actionable 
Information for Building Operators," in Proc. of the 2011 Western 
Energy Policy Research Conference, Aug. 2011. 

[7] S. Sharples, V. Callaghan, G. Clarke, "A Multi-Agent Architecture For 
Intelligent Building Sensing and Control," in International Sensor 
Review Journal, vol. 19, no. 2, pp. 135-140, May 1999. 

[8] C. Wei, Y. Li, "Design of energy consumption monitoring and energy-
saving management system of intelligent building based on the Internet 
of things," in Proc. of International Conference on Electronics, 
Communications and Control, pp. 3650-3652, Sept. 2011. 

[9] H. Doukas, C. Nychtis, J. Psarras, “Assessing energy-saving measures in 
buildings through an intelligent decision support model,” in Building 
and Environment, vol. 44, issue: 2, pp. 290-298, Feb. 2009. 

[10] N. Motegi, M. A. Piette, S. K. Kinney, J. Dewey, "Case Studies of 
Energy Information Systems and Related Technology: Operataional 
Practices, Costs, and Benefits," in Proc. of ICEBO - International 
Conference for Enhanced Building Operations, Oct. 2003. 

[11] R. Targosz, "Increasing energy efficiency in buildings through building 
automation measures - Role of demonstration," in Proc. of 11th 
International Conference on Electrical Power Quality and Utilisation, 
pp. 1-4, Oct. 2011. 

[12] J. Granderson, M. A. Piette, G. Ghatikar, P. Price, "Preliminary Findings 
from an Analysis of Building Energy Information System 
Technologies," in Proc of the 2009 National Conference on Building 
Commissioning, June 2009. 

[13] R. Lang, D. Bruckner, R. Velik, T. Deutsch, "Scenario Recognition in 
Modern Building Automation," in Proc. of Fieldbuses and Networks in 
Industrial and Embedded Systems, vol. 7, no. 1, pp. 36-44, 2007. 

[14] R. Seidl, "Trend Analysis for Commissioning," in ASHRAE Journal, vol. 
48, no. 1, pp. 34-43, 2006. 

[15] IDS Interval Data Systems, Inc: EnergyWitness [URL], Available: 
http://www.intdatsys.com/EnergyWitness.htm, from Apr. 2012. 

[16] EnergyICT: Energy Management [URL], Available: 
http://www.energyict.com/solutions.php?lang=EN&solcatno=47, from 
Apr. 2012. 

[17] Noveda: EnergyFlow Monitor [URL], Available: 
http://www.noveda.com/solutions/energy-management/energyflow-
monitor, from Apr. 2012. 

[18] Energy Worksite: Energy Expert [URL], Available: 
http://www.energyworksite.com/corporate/default.asp?cwnpID=90, 
from Apr. 2012. 

[19] EnerNOC: EfficiencySmart [URL], Available: 
http://www.enernoc.com/for-businesses/efficiencysmart, from Apr. 
2012. 

[20] M. A. Piette, S. K., Kinney, H. Friedman, (2001). EMCS and Time-
Series Energy Data Analysis in a Large Government Office Building 
(No. LBNL-47699). Lawrence Berkeley National Laboratory. 

[21] A. Ahmed, N. E. Korres, J. Ploennigs, H. Elhadi, K. Menzel, “Mining 
building performance data for energy-efficient operation,” in Advanced 
Engineering Informatics, vol. 25, issue: 2, pp. 341-354, Apr. 2011. 

[22] A. Ahmed, J. Ploennings, K. Menzel, B. Cahill, “Multi-dimensional 
performance data management for continous commisioning, ” in 
Advanced Engineering Informatics, vol. 24, no. 4, pp. 466-475, Nov. 
2010. 

[23] D. Kolokotosa, A. Pouliezos, G. Stavrakakis, C. Lazos, “Predictive 
control techniques for energy and indoor environmental quality 
management in buildings,” in Building and Environment, vol. 44, no. 9, 
pp. 1850-1863, Sep. 2009. 

[24] K. Li, H. Su, J. Chu, “Forecasting building energy consumption using 
neural networks and hybrid neuro-fuzzy system: A comparative study,” 
in Energy and Buildings, vol: 43, pp. 2893-2899, July 2011. 

[25] C. G. Rieger, D. I. Gertman, M. A. McQueen, “Resilient Control 
Systems: Next Generation Design Research,” in Proc. 2nd IEEE Conf. on 
Human System Interactions, pp. 632-636, May 2009. 

[26] O. Linda, T. Vollmer, J. Wright, M. Manic, “Fuzzy Logic Based 
Anomaly Detection for Embedded Network Security Cyber Sensor,” in 
Proc. IEEE Symposium Series on Computational Intelligence, pp. 202-
209, April 2011. 

 
 


